Wecome to HeBei ShengShi HongBang Cellulose Technology CO.,LTD.

  • fff1
  • fff2
  • fff3
  • fff4
  • Group 205.webp1
HeBei ShengShi HongBang Cellulose Technology CO.,LTD.
hpmc dextran hydroxypropyl methyl cellulose
hpmc dextran 70 hydroxypropyl methylcellulose
pp fiber

Polypropylene fiber ( PP fiber ) has transformed the synthetic fiber market with its remarkable technical properties, cost-performance ratio, and exceptional durability in multiple industries. Discover in-depth analysis, technical data, production detail, and real-world application cases in this complete guide. Polypropylene Fiber: Industry Overview & Market Trends Polypropylene fiber is a synthetic fiber made from polypropylene polymers, renowned for its low density, high strength-to-weight ratio, exceptional chemical resistance, and versatile use in construction, geotextiles, filtration, and automotive sectors. The global polypropylene fibre market reached $11.8 billion in 2023 (source: Grand View Research), with an expected CAGR of 7.4% from 2024 to 2030, driven largely by rising demand in pp fiber concrete for infrastructural projects and high-performance composites. Increasing attention to energy-efficiency, corrosion resistance, and lifecycle performance in civil works, petrochemical, and water infrastructure boosts polypropylene fiber usage. Leading organizations, like ASTM, ISO, and FDA, continually update standards ensuring the safety, performance, and sustainability of polypropylene fibre products. Technical leader: Microfiber synthetic PP fiber, enabling ultra-fine reinforcement in concrete and mortar. Certifications: Most products adhere to ISO 9001 (Quality), ISO 14001 (Environmental), and ASTM C1116 (Concrete admixtures). Key markets: Construction, geosynthetics, automotive, filtration, fire protection. Global players: Sika, Adfil, Fiber Mesh, BHP New Material ( product link ). Technical Parameters & Specifications Table Here’s a consolidated table comparing core properties of mainstream polypropylene fiber products, including PP fiber concrete grade and microfiber synthetic types. Parameter Polypropylene Fiber (General) PP Fiber Concrete Grade Microfiber Synthetic Polyester Fiber (for comparison) Raw Material 100% Polypropylene 100% Polypropylene (Special Grade) 100% Polypropylene (Micro Denier) 100% PET Diameter (μm) 18–25 ≥20 6–18 15–25 Length (mm) 6–54 12, 19, 38 3–18 6–54 Tensile Strength (MPa) 400–570 ≥500 430–650 400–600 Elongation at Break (%) 15–25 18–24 10–22 18–25 Melting Point (°C) 160–170 160–165 160–170 254 Density (g/cm³) 0.91 0.91 0.91 1.38 Chemical Resistance Excellent Excellent Excellent Fair Water Absorption (%) <0.01 <0.01 <0.01 0.4 UV Stability Good Good Excellent Good Standard Compliance ISO, ASTM, ANSI ISO, ASTM C1116 ISO, EN ISO, ASTM Technical Data Visualizations Manufacturing Process: Polypropylene Fiber The manufacturing of polypropylene fiber involves advanced steps and strict process controls, ensuring consistency, purity, and top-tier mechanical properties. Below is a stepwise process visualization and concise explanation. Polymerization of Propylene Refined propylene gas is catalyzed into PP resin (iso tactic for high performance), per ISO 22007 standards. → Extrusion & Spinning Melted PP resin extruded through spinnerets to form multi-filament strands . → Drawing & Orientation Fiber is stretched for increased tensile strength, targeting optimal crystallinity per ASTM D2256. → Cutting/Forming Fibers are cut to spec length (6–54mm) and optionally crimped for better dispersion in concrete. → Finishing & Quality Test Surface coated or uncoated as needed. Strict tests: tensile, elongation, alkali resistance (in-house & third-party labs ). Compliance: ISO 9001:2015 . → Packaging and Shipping Automated weighing & packing. Supply to construction, infrastructure, water treatment, metallurgy, & more. Highlight: ISO/ASTM certified polypropylene fiber demonstrates >95% batch uniformity , lifespan exceeding 50 years in non-UV-exposed concrete, and is 100% recyclable. Key Advantages of Polypropylene Fiber Excellent Strength-to-Weight Ratio: PP fiber is among the strongest fibers by mass; perfect for lightweight, high-toughness composites. Superior Chemical Stability: Non-reactive in concrete, aggressive soil, wastewater, sea water, and most acid/alkali exposures. Low Water Absorption: Near-zero uptake ensures dimensional stability; ideal for humid/coastal construction. Exceptional Durability: Passes ASTM C1116/C1399 for crack control and toughening in concrete applications. Thermal Stability: Melting point up to 170°C; outperforms many cellulosic and even some synthetic alternatives under heat shock. Non-Toxic & Safe: FDA/ISO certified for use in potable water systems, hygiene applications, and food packaging (with test reports). Microfiber Synthetic Advantage: Ultrafine filament achieves 3D mesh in concrete/mortar, dramatically reducing plastic shrinkage cracks. Application Scenarios of Polypropylene Fiber The versatility of polypropylene fiber ensures solutions across multiple sectors. Here are the most common and demanding application scenes: PP Fiber Concrete: Embedded in precast, ready-mixed, and sprayed concrete; crack control, freeze–thaw durability, blast/spalling resistance (conforms to ASTM C1609). Geotextiles & Geosynthetics: Soil stabilization, roadbeds, erosion control, landfill covers—proven lifetime >30 years, compliant with ISO 10319. Industrial Filtration: PP microfibers for high-efficiency filters in water treatment, chemical, or food processing—meets FDA/ISO 16890. Automotive & Composites: Car interior fabrics, trunk liners, composite reinforcement (weight savings: 23–40%). Civil Infrastructure: Water supply/sewage, chemical plant lining, anti-microbial barriers (due to zero-nutrient surface chemistry). Fire Protection: Microfiber PP fiber used in tunnel/metro concrete for explosive spalling resistance (endorsed by NFPA & ITA-AITES). Case Study: BHP Polypropylene Fiber in Metro Tunnel Engineering In 2023, Shanghai Metro Line 15 adopted high-toughness polypropylene fiber supplied by BHP New Material to enhance fireproof concrete segment linings. Key metrics post-curing were: Dosage: 1.8kg/m³ (fibers chopped 18mm, 19μm diameter, 570MPa strength). Test Results (SGS Lab): Plastic shrinkage reduction: 67%. Residual flexural strength after fire: +38% vs. control. No explosive spalling after 2h @1200°C. Concrete Durability: Projected service life: 50+ years, backed by ISO 9001/14001 documentation. Customer Feedback: "Seamless integration, zero fiber balling, and passed all local & international acceptance checks." – Shanghai Construction Group (Feb 2024) Polypropylene Fiber Product Solutions & Customization Standard Range: Virgin PP fiber (6–54mm), micro/mono/macro types, bundled or loose forms, suitable for concrete or nonwoven. Tailored Solutions: Custom diameter (6–25μm), length (3–54mm), multi-filament composite, hydrophobic/hydrophilic surface treatment. Reinforced Grades: Enhanced modulus – up to 17GPa for geosynthetics or bridge decks. Colored & Anti-UV Fiber: For visible construction joints or outdoor geo-applications with minimum UV degradation. Logistics & Support: Rapid global sample, third-party test certificate (SGS, TUV, BV available on request), technical on-site support. Order Cycle: Standard delivery: 7–12 working days (FCL/LCL), expedited options available for urgent projects. Warranty & Service: Quality compliance and material consistency guaranteed for 10+ years; full technical support; rapid claim response within 24h. Manufacturers & Global Supplier Comparison Manufacturer Main Product Certifications Noted Strength Customization Service Regions BHP New Material [link] PP micro/macro fiber, Pre-mixed PP reinforced concrete ISO 9001, ISO 14001, ASTM C1116, SGS 570MPa, anti-corrosive, high batch uniformity Yes: diameter, length, color, hydrophobic/UV options Global (50+ countries) Sika SikaFiber, Macro/Mono PP Fiber ISO, EN, ASTM C1399 Up to 560MPa Length, Type Global Adfil Construction Fibers Crackstop Micro, Macro Synth ISO, EN, CE 520MPa (macro), low-odor Diameter, length EU/Asia Fiber Mesh 100% PP Microfibers ASTM, ISO 500+ MPa, easy dispersion Length, bundle size USA, Global Professional FAQ: Polypropylene Fiber Q1: What material is polypropylene fiber made from? A1: 100% virgin polypropylene (C3H6)n; typically isotactic, which ensures high mechanical and chemical stability. Q2: What are standard specifications for pp fiber in concrete? A2: Fiber diameter: 20–25μm, length: 12, 18, or 38mm, modulus: 3.5–7 GPa, recommended dosage: 0.9–2.7kg/m³, per ASTM C1116. Q3: Which international standards apply to polypropylene fibre products? A3: Main standards: ISO 9001/14001 (quality/env), ASTM C1116/C1399 (concrete), EN 14889–2:2006 (fibers for concrete), FDA (food contact/hygiene). Q4: What is microfiber synthetic PP fiber and its application? A4: Ultra-fine PP fiber (diameter 6–12μm), provides 3D crack-control mesh in concrete/mortar, especially for tunnels, floors, and fire-resistant linings. Q5: How is installation performed for pp fiber concrete ? A5: Fibers are dry-blended into cement or aggregate prior to water addition; homogenous dispersion is critical for maximum crack resistance. Compatible with normal mixing and pumping equipment. Q6: What quality tests are required for each batch? A6: Tensile/elongation (ASTM D2256), alkali/acid resistance, batch uniformity, UV resistance (if required), and concrete mix tests per ASTM C1116. Q7: What is the typical shelf life and storage condition for polypropylene fiber ? A7: Over 5 years in dry, UV-protected storage; 100% recyclability, retains >95% properties post 1 year if stored below 50°C and <80% RH. Conclusion: Advanced PP Fiber, Trusted by Industry Polypropylene fiber is a material of choice for high-stress, high-durability, and safety-critical applications in today’s engineering world. Its technical superiority—shown in comparative charts and independent lab test data—ensures that engineers, builders, and manufacturers can rely on its performance for years to come. BHP New Material, holding ISO , ASTM , and FDA compliance, delivers not just standard products but collaborative R&D for custom solutions in every major market. "As fiber-modified concretes rise in infrastructure, PP fiber consistently delivers optimal economic and mechanical performance. Field trials corroborate its dominance over steel and glass alternatives in marine, tunnel, and geotextile applications." — Source: Eng-Tips Civil Engineering Forum: Polypropylene Fibers in Concrete ; Journal of Advanced Concrete Technology Vol. 22 (2023), "Synthetic Fiber Reinforced Concrete—A Review" . Visit BHP Polypropylene Fiber official page for full documentation & support >>

  • 40000tons
    Group_492

    Production

  • 20+years
    Group_493

    Experience

  • 5000+
    Group_494

    Acreage

Product Category
  • hpmc solubility in methanol

    Polypropylene Fibers for Sale An Overview In the world of textiles and materials, polypropylene fibers have gained significant attention due to their unique properties and wide-ranging applications. As industries evolve and demand for specialized materials grows, polypropylene fibers have emerged as a versatile option, appealing to manufacturers and consumers alike. This article will explore the characteristics, benefits, and various applications of polypropylene fibers, highlighting why they are increasingly becoming a preferred choice in many sectors. What are Polypropylene Fibers? Polypropylene fibers are synthetic fibers made from the polymer polypropylene (PP), a type of thermoplastic. This polymer is created through the polymerization process of propylene monomers. Polypropylene fibers are known for their resilience, lightweight nature, and ability to resist moisture. Because they are resistant to degradation by water and many chemicals, polypropylene fibers offer an innovative solution for numerous applications across different industries. Key Characteristics of Polypropylene Fibers 1. Durability One of the standout features of polypropylene fibers is their strength and durability. They can withstand wear and tear, making them suitable for use in heavily trafficked areas or rugged environments. 2. Moisture Resistance Unlike natural fibers, polypropylene does not absorb water. This characteristic makes it ideal for applications that require moisture management, such as outdoor furniture and automotive interiors. 3. Chemical Resistance Polypropylene fibers are resistant to a wide range of chemicals, making them suitable for industrial applications where exposure to corrosive substances is a concern. 4. Lightweight Polypropylene is one of the lightest synthetic fibers available, which can significantly reduce transportation costs and improve the ease of handling the material in various applications. 5. UV Resistance Many polypropylene fibers are treated to be UV resistant, enhancing their longevity when used in outdoor applications. . Applications of Polypropylene Fibers ألياف البولي بروبلين للبيع Polypropylene fibers are used in a wide array of applications, spanning multiple industries. Here are some prominent uses 1. Textiles and Carpets One of the most common applications for polypropylene fibers is in the production of carpets and rugs. Their durability and moisture resistance make them ideal for residential and commercial carpeting. 2. Geotextiles In the construction industry, polypropylene fibers are used in geotextiles to provide soil stabilization, erosion control, and drainage. Their resistance to chemicals and durability make them invaluable in this field. 3. Automotive Interiors The automotive industry employs polypropylene fibers due to their lightweight nature, resistance to moisture, and ease of maintenance. They are commonly used in vehicle upholstery, carpets, and interior panels. 4. Medical Applications Polypropylene fibers are used in various medical textiles, such as surgical sutures and drapes, due to their biocompatibility and resistance to moisture and bacteria. 5. Consumer Products From outdoor furniture to industrial filters, polypropylene fibers are used in a vast range of consumer goods, making them a staple in household and commercial products. Benefits of Investing in Polypropylene Fibers Investing in polypropylene fibers can be advantageous for manufacturers and consumers alike. For manufacturers, the cost-effectiveness and versatile applications of polypropylene allow for innovation and the development of high-quality products that meet consumer demands. For consumers, the durability and low maintenance requirements of polypropylene products generally translate to long-lasting value. Moreover, as environmental concerns grow, many manufacturers are focusing on the recyclability of polypropylene fibers. Efforts are being made to enhance the sustainability of production processes and newer developments are paving the way for eco-friendly polypropylene options. Conclusion As the demand for versatile and durable materials continues to rise, polypropylene fibers stand out as a superior option across various industries. With their unique properties and diverse applications, they are a valuable resource for manufacturers looking to meet market needs effectively. Investors and businesses interested in high-quality materials would do well to consider polypropylene fibers, as they not only offer practicality but also long-term value in an ever-evolving market.

  • hydroxypropyl methylcellulose is used in

    Methylcellulose An Essential Excipient in Pharmaceutical Innovations In the realm of pharmaceutical science, the importance of excipients can't be overstated. Methylcellulose, a cellulose derivative, stands as a pivotal player in the formulation of various medications, offering unique properties that enhance drug delivery and efficacy. This article explores the multifaceted applications of methylcellulose in pharmaceuticals, underpinned by a deep dive into its characteristics and contributions to modern medicine. Methylcellulose is renowned for its exceptional ability to act as a binder, emulsifier, and controlled-release agent. This versatility stems from its unique chemical structure, which combines cellulose with methyl ethers. This modification endows methylcellulose with hydrophilic and viscoelastic properties, making it invaluable in tablet formation. In experience-driven product development, many formulation scientists have attested to its efficient binding capabilities that ensure tablets are robust and cohesive, yet break down efficiently in the digestive system for optimal drug absorption. Its emulsifying properties are equally significant. Methylcellulose acts as a stabilizer for emulsions, crucial for the production of topical ointments and creams where active pharmaceutical ingredients (APIs) are dispersed in a carrier substance. Expertise in formulation confirms that methylcellulose contributes to the uniform distribution of APIs, enhancing the product's overall therapeutic efficacy. This makes it an indispensable component in dermatological applications, exuding trust through consistent performance and patient outcomes. Controlled-release formulations are the frontier of patient-centric drug delivery systems. Methylcellulose functions as a matrix former in these formulations, providing sustained release of active ingredients over prolonged periods. This minimizes dosing frequency and enhances patient compliance—a testimony to its authoritativeness in pharmaceutical research and development. Numerous clinical studies validate its effectiveness in achieving steady plasma concentration levels of medications, thereby optimizing therapeutic results and reducing side effects. methylcellulose used in pharmaceuticals Notably, the trustworthiness of methylcellulose in pharmaceuticals is anchored on its safety profile . It is an inert compound, not absorbed systemically, reducing the risk of adverse effects. This inertness, coupled with its biodegradability, makes methylcellulose an eco-friendly choice for pharmaceutical industries committed to sustainable practices. Regulatory agencies, including the FDA, have extensively reviewed and approved its use across various drug formulations, further cementing its status as a reliable excipient. Furthermore, patient experience with methylcellulose-based products is overwhelmingly positive. Anecdotal evidence and patient testimonials highlight improved compliance due to the ease of administration and the enhanced stability of formulations. This feedback, gathered over years of clinical use, continuously informs improvements in product design and delivery methods, reinforcing methylcellulose's place in pharmaceutical innovation. As the pharmaceutical landscape evolves, the demand for novel delivery systems and patient-friendly formulations grows. Methylcellulose, with its diverse applications and proven benefits, remains at the forefront of this evolution. It epitomizes the intersection of scientific innovation and practical application, underscoring the importance of excipients in the advancement of healthcare solutions. By integrating methylcellulose with technological advancements, pharmaceutical companies not only enhance the quality and efficacy of their products but also fortify their reputation in the industry. Thus, methylcellulose is not merely an excipient; it is a cornerstone of pharmaceutical excellence, instrumental in shaping the future of medicine.

Get Free Quote or Can call us At Our Emergency Services

+86-131-8048-6930

Our Advantage
We have three
advantages
  • Group_497

    200000 Viscosities

    Excellent product

    We can produce pure products up to 200,000 viscosities

  • Group_496

    40000 tons

    High yield

    We don’t stop production all year round, and the annual output can reach 40,000 tons

  • Frame

    24 hours

    Quality service

    We provide 24-hours online reception service, welcome to consult at any time

———— Inquiry Form

Schedule A services


If you are interested in our products, you can choose to leave your information here, and we will be in touch with you shortly.


TOP